Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(7)2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-37047353

RESUMO

Sigma-2 receptor (S2R) is a S2R ligand-binding site historically associated with reportedly 21.5 kDa proteins that have been linked to several diseases, such as cancer, Alzheimer's disease, and schizophrenia. The S2R is highly expressed in various tumors, where it correlates with the proliferative status of the malignant cells. Recently, S2R was reported to be the transmembrane protein TMEM97. Prior to that, we had been investigating the translocator protein (TSPO) as a potential 21.5 kDa S2R candidate protein with reported heme and sterol associations. Here, we investigate the contributions of TMEM97 and TSPO to S2R activity in MCF7 breast adenocarcinoma and MIA PaCa-2 (MP) pancreatic carcinoma cells. Additionally, the role of the reported S2R-interacting partner PGRMC1 was also elucidated. Proximity ligation assays and co-immunoprecipitation show a functional association between S2R and TSPO. Moreover, a close physical colocalization of TMEM97 and TSPO was found in MP cells. In MCF7 cells, co-immunoprecipitation only occurred with TMEM97 but not with PGRMC1, which was further confirmed by confocal microscopy experiments. Treatment with the TMEM97 ligand 20-(S)-hydroxycholesterol reduced co-immunoprecipitation of both TMEM97 and PGRMC1 in immune pellets of immunoprecipitated TSPO in MP cells. To the best of our knowledge, this is the first suggestion of a (functional) interaction between TSPO and TMEM97 that can be affected by S2R ligands.


Assuntos
Receptores sigma , Humanos , Ligantes , Ligação Proteica , Receptores sigma/metabolismo , Sítios de Ligação , Receptores de GABA/metabolismo , Proteínas de Membrana/metabolismo , Receptores de Progesterona/metabolismo
2.
J Med Chem ; 66(6): 3798-3817, 2023 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-36919956

RESUMO

Sigma (σ) receptor subtypes, σ1 and σ2, are targets of wide pharmaceutical interest. The σ2 receptor holds promise for the development of diagnostics and therapeutics against cancer and Alzheimer's disease. Nevertheless, little is known about the mechanisms activated by the σ2 receptor. To contribute to the exploitation of its therapeutic potential, we developed novel specific fluorescent ligands. Indole derivatives bearing the N-butyl-3H-spiro[isobenzofuran-1,4'-piperidine] portion were functionalized with fluorescent tags. Nanomolar-affinity fluorescent σ ligands, spanning from green to red to near-infrared emission, were obtained. Compounds 19 (σ pan affinity) and 29 (σ2 selective), which displayed the best compromise between pharmacodynamic and photophysical properties, were investigated in flow cytometry, confocal, and live cell microscopy, demonstrating their specificity for the σ2 receptor. To the best of our knowledge, these are the first red-emitting fluorescent σ2 ligands, validated as powerful tools for the study of σ2 receptors via fluorescence-based techniques.


Assuntos
Receptores sigma , Ligantes , Fluorescência , Corantes
3.
Small ; 19(22): e2300767, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36843221

RESUMO

Bottlebrush polymers are highly promising as unimolecular nanomedicines due to their unique control over the critical parameters of size, shape and chemical function. However, since they are prepared from biopersistent carbon backbones, most known bottlebrush polymers are non-degradable and thus unsuitable for systemic therapeutic administration. Herein, we report the design and synthesis of novel poly(organo)phosphazene-g-poly(α-glutamate) (PPz-g-PGA) bottlebrush polymers with exceptional control over their structure and molecular dimensions (Dh ≈ 15-50 nm). These single macromolecules show outstanding aqueous solubility, ultra-high multivalency and biodegradability, making them ideal as nanomedicines. While well-established in polymer therapeutics, it has hitherto not been possible to prepare defined single macromolecules of PGA in these nanosized dimensions. A direct correlation was observed between the macromolecular dimensions of the bottlebrush polymers and their intracellular uptake in CT26 colon cancer cells. Furthermore, the bottlebrush macromolecular structure visibly enhanced the pharmacokinetics by reducing renal clearance and extending plasma half-lives. Real-time analysis of the biodistribution dynamics showed architecture-driven organ distribution and enhanced tumor accumulation. This work, therefore, introduces a robust, controlled synthesis route to bottlebrush polypeptides, overcoming limitations of current polymer-based nanomedicines and, in doing so, offers valuable insights into the influence of architecture on the in vivo performance of nanomedicines.


Assuntos
Polímeros , Água , Distribuição Tecidual , Polímeros/química , Substâncias Macromoleculares , Água/química , Peptídeos
4.
Antioxid Redox Signal ; 33(6): 395-414, 2020 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-32336116

RESUMO

Aims: Due to their significant biological activity, thiosemicarbazones (TSCs) are promising candidates for anticancer therapy. In part, the efficacy of TSCs is linked to their ability to chelate essential metal ions such as copper and iron. Triapine, the best-studied anticancer TSC, has been tested clinically with promising results in hematological diseases. During the past few years, a novel subclass of TSCs with improved anticancer activity was found to induce paraptosis, a recently characterized form of cell death. The aim of this study was to identify structural and chemical properties associated with anticancer activity and paraptosis induction of TSCs. Results: When testing a panel of structurally related TSCs, compounds with nanomolar anticancer activity and paraptosis-inducing properties showed higher copper(II) complex solution stability and a slower reduction rate, which resulted in reduced redox activity. In contrast, TSCs with lower anticancer activity induced higher levels of superoxide that rapidly stimulated superoxide dismutase expression in treated cells, effectively protecting the cells from drug-induced redox stress. Innovation: Consequently, we hypothesize that in the case of close Triapine derivatives, intracellular reduction leads to rapid dissociation of intracellularly formed copper complexes. In contrast, TSCs characterized by highly stable, slowly reducible copper(II) complexes are able to reach new intracellular targets such as the endoplasmic reticulum-resident protein disulfide isomerase. Conclusion: The additional modes of actions observed with highly active TSC derivatives are based on intracellular formation of stable copper complexes, offering a new approach to combat (drug-resistant) cancer cells.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Cobre/química , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Tiossemicarbazonas/química , Tiossemicarbazonas/farmacologia , Antioxidantes/química , Antioxidantes/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Humanos , Oxirredução/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Solubilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...